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144 4-3 Transient Heat Flow in a Semi-Infinite Solid

Figure 4-3 Nomenclature for transient
heat flow in a semi-infinite
solid.

qo = –kA
x=0

∂T
∂x

T1

T0

x

seek an expression for the temperature distribution in the solid as a function of time. This
temperature distribution may subsequently be used to calculate heat flow at any x position
in the solid as a function of time. For constant properties, the differential equation for the
temperature distribution T(x, τ) is

∂2T

∂x2
= 1 ∂T

α ∂τ
[4-7]

The boundary and initial conditions are

T(x, 0)= Ti

T(0, τ)= T0 for τ> 0

This is a problem that may be solved by the Laplace-transform technique. The solution is
given in Reference 1 as

T(x, τ)− T0

Ti− T0
= erf

x

2
√
ατ

[4-8]

where the Gauss error function is defined as

erf
x

2
√
ατ

= 2√
π

∫ x/2
√
ατ

e−η2
dη [4-9]

It will be noted that in this definition η is a dummy variable and the integral is a function of
its upper limit. When the definition of the error function is inserted in Equation (4-8), the
expression for the temperature distribution becomes

T(x, τ)− T0

Ti− T0
= 2√

π

∫ x/2
√
ατ

e−η2
dη [4-10]

The heat flow at any x position may be obtained from

qx = −kA∂T
∂x

Performing the partial differentiation of Equation (4-10) gives

∂T

∂x
= (Ti− T0)

2√
π
e−x2/4ατ ∂

∂x

(
x

2
√
ατ

)
[4-11]

= Ti− T0√
πατ

e−x2/4ατ
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Figure 4-4 Response of semi-infinite solid to (a) sudden change in surface temperature and
(b) instantaneous surface pulse of Q0/A J/m2.
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At the surface (x= 0) the heat flow is

q0 = kA(T0 − Ti)√
πατ

[4-12]

The surface heat flux is determined by evaluating the temperature gradient at x= 0 from
Equation (4-11). A plot of the temperature distribution for the semi-infinite solid is given
in Figure 4-4. Values of the error function are tabulated in Reference 3, and an abbreviated
tabulation is given in Appendix A.

Constant Heat Flux on Semi-Infinite Solid

For the same uniform initial temperature distribution, we could suddenly expose the surface
to a constant surface heat flux q0/A. The initial and boundary conditions on Equation (4-7)
would then become

T(x, 0)= Ti

q0

A
= −k ∂T

∂x

]
x=0

for τ> 0

The solution for this case is

T − Ti= 2q0
√
ατ/π

kA
exp

(−x2

4ατ

)
− q0x

kA

(
1 − erf

x

2
√
ατ

)
[4-13a]

Energy Pulse at Surface

Equation (4-13a) presents the temperature response that results from a surface heat flux that
remains constant with time. A related boundary condition is that of a short, instantaneous
pulse of energy at the surface having a magnitude of Q0/A. The resulting temperature
response is given by

T − Ti= [Q0/Aρc(πατ)
1/2] exp(−x2/4ατ) [4-13b]
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146 4-3 Transient Heat Flow in a Semi-Infinite Solid

In contrast to the constant-heat-flux case where the temperature increases indefinitely for
all x and times, the temperature response to the instantaneous surface pulse will die out with
time, or

T − Ti→ 0 for all x as τ→ ∞
This rapid exponential decay behavior is illustrated in Figure 4-4b.

EXAMPLE 4-2

Semi-Infinite Solid with Sudden Change
in Surface Conditions

Alarge block of steel [k= 45 W/m · ◦C, α= 1.4 × 10−5 m2/s] is initially at a uniform temperature
of 35◦C. The surface is exposed to a heat flux (a) by suddenly raising the surface temperature to
250◦C and (b) through a constant surface heat flux of 3.2 × 105 W/m2. Calculate the temperature
at a depth of 2.5 cm after a time of 0.5 min for both these cases.

Solution
We can make use of the solutions for the semi-infinite solid given as Equations (4-8) and (4-13a).
For case a,

x

2
√
ατ

= 0.025

(2)[(1.4 × 10−5)(30)]1/2 = 0.61

The error function is determined from Appendix A as

erf
x

2
√
ατ

= erf 0.61 = 0.61164

We have Ti= 35◦C and T0 = 250◦C, so the temperature at x= 2.5 cm is determined from
Equation (4-8) as

T(x, τ)= T0 + (Ti− T0) erf
x

2
√
ατ

= 250 + (35 − 250)(0.61164)= 118.5◦C

For the constant-heat-flux case b, we make use of Equation (4-13a). Since q0/A is given as
3.2 × 105 W/m2, we can insert the numerical values to give

T(x, τ)= 35 + (2)(3.2 × 105)[(1.4 × 10−5)(30)/π]1/2
45

e−(0.61)2

− (0.025)(3.2 × 105)

45
(1 − 0.61164)

= 79.3◦C x= 2.5 cm, τ= 30 s

For the constant-heat-flux case the surface temperature after 30 s would be evaluated with x= 0
in Equation (4-13a). Thus,

T(x= 0)= 35 + (2)(3.2 × 105)[(1.4 × 10−5)(30)/π]1/2
45

= 199.4◦C

EXAMPLE 4-3 Pulsed Energy at Surface of Semi-Infinite Solid

An instantaneous laser pulse of 10 MJ/m2 is imposed on a slab of stainless steel having properties
of ρ= 7800 kg/m3, c= 460 J/kg · ◦C, and α= 0.44 × 10−5 m2/s. The slab is initially at a uniform
temperature of 40 ◦C. Estimate the temperature at the surface and at a depth of 2.0 mm after a time
of 2 s.
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Solution
This problem is a direct application of Equation (4-13b). We haveQ0/A= 107 J/m2 and at x= 0

T0 − Ti =Q0/Aρc(πατ)
1.2

= 107/(7800)(460)[π(0.44 × 10−5)(2)]0.5 = 530◦C

and

T0 = 40 + 530 = 570◦C

At x= 2.0 mm = 0.002 m,

T − Ti= (530)exp[−(0.002)2/(4)(0.44 × 10−5)(2)] = 473◦C

and
T = 40 + 473 = 513◦C

Heat Removal from Semi-Infinite Solid EXAMPLE 4-4

A large slab of aluminum at a uniform temperature of 200◦C suddenly has its surface temperature
lowered to 70◦C. What is the total heat removed from the slab per unit surface area when the
temperature at a depth 4.0 cm has dropped to 120◦C?

Solution
We first find the time required to attain the 120◦C temperature and then integrate Equation (4-12)
to find the total heat removed during this time interval. For aluminum,

α= 8.4 × 10−5 m2/s k= 215 W/m · ◦C [124 Btu/h · ft · ◦F]

We also have

Ti= 200◦C T0 = 70◦C T(x, τ)= 120◦C

Using Equation (4-8) gives

120 − 70

200 − 70
= erf

x

2
√
ατ

= 0.3847

From Figure 4-4 or Appendix A,
x

2
√
ατ

= 0.3553

and

τ= (0.04)2

(4)(0.3553)2(8.4 × 10−5)
= 37.72 s

The total heat removed at the surface is obtained by integrating Equation (4-12):

Q0

A
=
∫ τ

0

q0

A
dτ=

∫ τ

0

k(T0 − Ti)√
πατ

dτ= 2k(T0 − Ti)
√
τ

πα

= (2)(215)(70 − 200)

[
37.72

π(8.4 × 10−5)

]1/2
= −21.13 × 106 J/m2 [−1861 Btu/ft2]

4-4 CONVECTION BOUNDARY CONDITIONS
In most practical situations the transient heat-conduction problem is connected with a con-
vection boundary condition at the surface of the solid. Naturally, the boundary conditions
for the differential equation must be modified to take into account this convection heat
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148 4-4 Convection Boundary Conditions

transfer at the surface. For the semi-infinite-solid problem, the convection boundary con-
dition would be expressed by

Heat convected into surface = heat conducted into surface

or

hA(T∞ − T)x=0 = −kA ∂T

∂x

]
x=0

[4-14]

The solution for this problem is rather involved and is worked out in detail by Schneider
[1]. The result is

T − Ti
T∞ − Ti = 1 − erf X−

[
exp

(
hx

k
+ h2ατ

k2

)]
×
[

1 − erf

(
X+ h

√
ατ

k

)]
[4-15]

where

X= x/(2√
ατ)

Ti= initial temperature of solid

T∞ = environment temperature

This solution is presented in graphical form in Figure 4-5.
Solutions have been worked out for other geometries. The most important cases are

those dealing with (1) plates whose thickness is small in relation to the other dimensions,
(2) cylinders where the diameter is small compared to the length, and (3) spheres. Results
of analyses for these geometries have been presented in graphical form by Heisler [2],
and nomenclature for the three cases is illustrated in Figure 4-6. In all cases the convection
environment temperature is designated as T∞ and the center temperature for x= 0 or r= 0 is
T0.At time zero, each solid is assumed to have a uniform initial temperatureTi. Temperatures
in the solids are given in Figures 4-7 to 4-13 as functions of time and spatial position. In
these charts we note the definitions

θ = T(x, τ)− T∞ or T(r, τ)− T∞
θi = Ti− T∞
θ0 = T0 − T∞

If a centerline temperature is desired, only one chart is required to obtain a value for θ0 and
then T0. To determine an off-center temperature, two charts are required to calculate the
product

θ

θi
= θ0

θi

θ

θ0

For example, Figures 4-7 and 4-10 would be employed to calculate an off-center temperature
for an infinite plate.

The heat losses for the infinite plate, infinite cylinder, and sphere are given in
Figures 4-14 to 4-16, whereQ0 represents the initial internal energy content of the body in
reference to the environment temperature

Q0 = ρcV(Ti− T∞)= ρcVθi [4-16]

In these figures Q is the actual heat lost by the body in time τ.
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Figure 4-5 Temperature distribution in the semi-infinite solid with convection boundary condition.
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Figure 4-6 Nomenclature for one-dimensional solids suddenly subjected to convection
environment at T∞: (a) infinite plate of thickness 2L; (b) infinite cylinder of
radius r0; (c) sphere of radius r0.
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Figure 4-7 (Continued). (b) expanded scale for 0< Fo< 4, from Reference 2.
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If one considers the solid as behaving as a lumped capacity during the cooling or heating
process, that is, small internal resistance compared to surface resistance, the exponential
cooling curve of Figure 4-5 may be replotted in expanded form, as shown in Figure 4-13
using the Biot-Fourier product as the abscissa. We note that the following parameters apply
for the bodies considered in the Heisler charts.

(A/V)inf plate = 1/L

(A/V)inf cylinder = 2/r0
(A/V)sphere = 3/r0

Obviously, there are many other practical heating and cooling problems of interest. The
solutions for a large number of cases are presented in graphical form by Schneider [7], and
readers interested in such calculations will find this reference to be of great utility.

The Biot and Fourier Numbers

A quick inspection of Figures 4-5 to 4-16 indicates that the dimensionless temperature
profiles and heat flows may all be expressed in terms of two dimensionless parameters
called the Biot and Fourier numbers:

Biot number = Bi = hs

k

Fourier number = Fo = ατ

s2
= kτ

ρcs2

In these parameters s designates a characteristic dimension of the body; for the plate it is
the half-thickness, whereas for the cylinder and sphere it is the radius. The Biot number
compares the relative magnitudes of surface-convection and internal-conduction resistances
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Figure 4-8 (Continued). (b) expanded scale for 0< Fo< 4, from Reference 2.

1.0

0.7

0.5

0.1

0.2

0.3

0.4

10 2 3

4

3.0

2.5

3.5

4
0 0.2 0.4 0.6 0.8 1.0 1.2 1.6 1.8 2.0

0
�  

i =
 (T

0 
− 

T
∞

)�(
T

i −
 T

∞
) 

θ
θ

ατ = Fo
r0

2

100

20

25
50

16
14
12

8
9

7

6

k�
hr

0 
=

 1
�B

i

5

(b)

to heat transfer. The Fourier modulus compares a characteristic body dimension with an
approximate temperature-wave penetration depth for a given time τ.

A very low value of the Biot modulus means that internal-conduction resistance is
negligible in comparison with surface-convection resistance. This in turn implies that the
temperature will be nearly uniform throughout the solid, and its behavior may be approxi-
mated by the lumped-capacity method of analysis. It is interesting to note that the exponent
of Equation (4-5) may be expressed in terms of the Biot and Fourier numbers if one takes
the ratio V/A as the characteristic dimension s. Then,

hA

ρcV
τ= hτ

ρcs
= hs

k

kτ

ρcs2
= Bi Fo

Applicability of the Heisler Charts

The calculations for the Heisler charts were performed by truncating the infinite series
solutions for the problems into a few terms. This restricts the applicability of the charts to
values of the Fourier number greater than 0.2.

Fo = ατ

s2
> 0.2

For smaller values of this parameter the reader should consult the solutions and charts given
in the references at the end of the chapter. Calculations using the truncated series solutions
directly are discussed in Appendix C.
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Figure 4-9 (Continued). (b) expanded scale for 0< Fo< 3, from Reference 2.
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Figure 4-10 Temperature as a function of center temperature in an
infinite plate of thickness 2L, from Reference 2.
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Figure 4-11 Temperature as a function of axis temperature in an
infinite cylinder of radius r0, from Reference 2.

0.01 0.02 0.05 0.1 0.2 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2
0

0

3 5 10 20 50 1000.5

/  
0

=
(T

−
T

∞
)/

(T
0

−
T

∞
)

θ
θ

=k
hr0

1
Bi

0.8

0.9

1.0

0.6

0.4

r /r0 = 0.2

Figure 4-12 Temperature as a function of center temperature for a
sphere of radius r0, from Reference 2.
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Figure 4-13 Temperature variation with time for solids that may be
treated as lumped capacities: (a) 0<BiFo< 10,
(b) 0.1<BiFo< 1.0, (c) 0<BiFo< 0.1.
Note: (A/V)inf plate = 1/L, (A/V)inf cyl = 2/r0,
(A/V)sphere = 3/r0. See Equations (4-5) and (4-6).

0.00001

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10

(a)

θ
θi

BiFo = c�
h(A/V)τ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

BiFo = c�
h(A/V)τ

θ
θi

157

www.FluidMechanics.ir



hol29362_ch04 10/14/2008 19:33

# 101675 Cust: McGraw-Hill Au: Holman Pg. No.158 K/PMS 293

Title: Heat Transfer 10/e Server: Short / Normal / Long

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

Figure 4-13 (Continued).
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Figure 4-14 Dimensionless heat loss Q/Q0 of an infinite plane of thickness 2L with time,
from Reference 6.
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Figure 4-15 Dimensionlesss heat loss Q/Q0 of an infinite cylinder of radius r0 with time,
from Reference 6.
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Figure 4-16 Dimensionless heat loss Q/Q0 of a sphere of radius r0 with time, from
Reference 6.

10−5 10−4 10−3 10−2 10−1 1 10 102 103 104

= Fo Bi2h2

k2
ατ

Q
Q0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

hr
0

/k
=

0.
00

1
0.

00
2

0.
00

5

0.
05 0.
1

0.
2

0.
5

1 2 5

10 20 500.
01

0.
02

Sudden Exposure of Semi-Infinite
Slab to Convection EXAMPLE 4-5

The slab of Example 4-4 is suddenly exposed to a convection-surface environment of 70◦C with
a heat-transfer coefficient of 525 W/m2 · ◦C. Calculate the time required for the temperature to
reach 120◦C at the depth of 4.0 cm for this circumstance.

Solution
We may use either Equation (4-15) or Figure 4-5 for solution of this problem, but Figure 4-5 is
easier to apply because the time appears in two terms. Even when the figure is used, an iterative
procedure is required because the time appears in both of the variables h

√
ατ/k and x/(2

√
ατ).
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160 4-4 Convection Boundary Conditions

We seek the value of τ such that

T − Ti
T∞ − Ti = 120 − 200

70 − 200
= 0.615 [a]

We therefore try values of τ and obtain readings of the temperature ratio from Figure 4-5 until
agreement with Equation (a) is reached. The iterations are listed below. Values of k and α are
obtained from Example 4-4.

τ, s

h
√

ατ

k

x

2
√

ατ

T − Ti

T∞ − Ti
from Figure 4-5

1000 0.708 0.069 0.41
3000 1.226 0.040 0.61
4000 1.416 0.035 0.68

Consequently, the time required is approximately 3000 s.

EXAMPLE 4-6 Aluminum Plate Suddenly Exposed to Convection

Alarge plate of aluminum 5.0 cm thick and initially at 200◦C is suddenly exposed to the convection
environment of Example 4-5. Calculate the temperature at a depth of 1.25 cm from one of the faces
1 min after the plate has been exposed to the environment. How much energy has been removed
per unit area from the plate in this time?

Solution
The Heisler charts of Figures 4-7 and 4-10 may be used for solution of this problem. We first
calculate the center temperature of the plate, using Figure 4-7, and then use Figure 4-10 to calculate
the temperature at the specified x position. From the conditions of the problem we have

θi = Ti− T∞ = 200 − 70 = 130 α= 8.4 × 10−5 m2/s [3.26 ft2/h]
2L= 5.0 cm L= 2.5 cm τ= 1 min = 60 s

k = 215 W/m · ◦C [124 Btu/h · ft · ◦F]
h= 525 W/m2 · ◦C [92.5 Btu/h · ft2 · ◦F]
x= 2.5 − 1.25 = 1.25 cm

Then

ατ

L2
= (8.4 × 10−5)(60)

(0.025)2
= 8.064

k

hL
= 215

(525)(0.025)
= 16.38

x

L
= 1.25

2.5
= 0.5

From Figure 4-7

θ0

θi
= 0.61

θ0 = T0 − T∞ = (0.61)(130)= 79.3

From Figure 4-10 at x/L= 0.5,
θ

θ0
= 0.98

and

θ = T − T∞ = (0.98)(79.3)= 77.7

T = 77.7 + 70 = 147.7◦C
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We compute the energy lost by the slab by using Figure 4-14. For this calculation we require the
following properties of aluminum:

ρ= 2700 kg/m3 c= 0.9 kJ/kg · ◦C

For Figure 4-14 we need

h2ατ

k2
= (525)2(8.4 × 10−5)(60)

(215)2
= 0.03

hL

k
= (525)(0.025)

215
= 0.061

From Figure 4-14
Q

Q0
= 0.41

For unit area

Q0

A
= ρcVθi

A
= ρc(2L)θi

= (2700)(900)(0.05)(130)

= 15.8 × 106 J/m2

so that the heat removed per unit surface area is

Q

A
= (15.8 × 106)(0.41)= 6.48 × 106 J/m2 [571 Btu/ft2]

Long Cylinder Suddenly Exposed to Convection EXAMPLE 4-7

A long aluminum cylinder 5.0 cm in diameter and initially at 200◦C is suddenly exposed to a
convection environment at 70◦C and h= 525 W/m2 · ◦C. Calculate the temperature at a radius of
1.25 cm and the heat lost per unit length 1 min after the cylinder is exposed to the environment.

Solution
This problem is like Example 4-6 except that Figures 4-8 and 4-11 are employed for the solution.
We have

θi= Ti− T∞ = 200 − 70 = 130 α= 8.4 × 10−5 m2/s

r0 = 2.5 cm τ= 1 min = 60 s

k= 215 W/m · ◦C h= 525 W/m2 · ◦C r= 1.25 cm

ρ = 2700 kg/m3 c= 0.9 kJ/kg · ◦C

We compute

ατ

r20

= (8.4 × 10−5)(60)

(0.025)2
= 8.064

k

hr0
= 215

(525)(0.025)
= 16.38

r

r0
= 1.25

2.5
= 0.5

From Figure 4-8
θ0

θi
= 0.38

and from Figures 4-11 at r/r0 = 0.5
θ

θ0
= 0.98
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so that
θ

θi
= θ0

θi

θ

θ0
= (0.38)(0.98)= 0.372

and

θ= T − T∞ = (0.372)(130)= 48.4

T = 70 + 48.4 = 118.4◦C

To compute the heat lost, we determine

h2ατ

k2
= (525)2(8.4 × 10−5)(60)

(215)2
= 0.03

hr0

k
= (525)(0.025)

215
= 0.061

Then from Figure 4-15
Q

Q0
= 0.65

For unit length

Q0

L
= ρcVθi

L
= ρcπr20θi= (2700)(900)π(0.025)2(130)= 6.203 × 105 J/m

and the actual heat lost per unit length is

Q

L
= (6.203 × 105)(0.65)= 4.032 × 105 J/m [116.5 Btu/ft]

4-5 MULTIDIMENSIONAL SYSTEMS
The Heisler charts discussed in Section 4-4 may be used to obtain the temperature distri-
bution in the infinite plate of thickness 2L, in the long cylinder, or in the sphere. When a
wall whose height and depth dimensions are not large compared with the thickness or a
cylinder whose length is not large compared with its diameter is encountered, additional
space coordinates are necessary to specify the temperature, the charts no longer apply, and
we are forced to seek another method of solution. Fortunately, it is possible to combine the
solutions for the one-dimensional systems in a very straightforward way to obtain solutions
for the multidimensional problems.

It is clear that the infinite rectangular bar in Figure 4-17 can be formed from two
infinite plates of thickness 2L1 and 2L2, respectively. The differential equation governing
this situation would be

∂2T

∂x2
+ ∂2T

∂z2
= 1

α

∂T

∂τ
[4-17]

and to use the separation-of-variables method to effect a solution, we should assume a
product solution of the form

T(x, z, τ)=X(x)Z(z)
(τ)
It can be shown that the dimensionless temperature distribution may be expressed as a
product of the solutions for two plate problems of thickness 2L1 and 2L2, respectively:(

T − T∞
Ti− T∞

)
bar

=
(
T − T∞
Ti− T∞

)
2L1 plate

(
T − T∞
Ti− T∞

)
2L2 plate

[4-18]

where Ti is the initial temperature of the bar and T∞ is the environment temperature.

www.FluidMechanics.ir



hol29362_ch04 10/14/2008 19:33

# 101675 Cust: McGraw-Hill Au: Holman Pg. No.163 K/PMS 293

Title: Heat Transfer 10/e Server: Short / Normal / Long

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

C H A P T E R 4 Unsteady-State Conduction 163

Figure 4-17 Infinite rectangular bar.

x

y

z

2L1

2L2

For two infinite plates the respective differential equations would be

∂2T1

∂x2
= 1

α

∂T1

∂τ

∂2T2

∂z2
= 1

α

∂T2

∂τ
[4-19]

and the product solutions assumed would be

T1 = T1(x, τ) T2 = T2(z, τ) [4-20]

We shall now show that the product solution to Equation (4-17) can be formed from a simple
product of the functions (T1, T2), that is,

T(x, z, τ)= T1(x, τ)T2(z, τ) [4-21]

The appropriate derivatives for substitution in Equation (4-17) are obtained from Equa-
tion (4-21) as

∂2T

∂x2
= T2

∂2T1

∂x2

∂2T

∂z2
= T1

∂2T2

∂z2

∂T

∂τ
= T1

∂T2

∂τ
+ T2

∂T1

∂τ

Using Equations (4-19), we have

∂T

∂τ
=αT1

∂2T2

∂z2
+αT2

∂2T1

∂x2

Substituting these relations in Equation (4-17) gives

T2
∂2T1

∂x2
+ T1

∂2T2

∂z2
= 1

α

(
αT1

∂2T2

∂z2
+αT2

∂2T1

∂x2

)

or the assumed product solution of Equation (4-21) does indeed satisfy the original dif-
ferential equation (4-17). This means that the dimensionless temperature distribution for
the infinite rectangular bar may be expressed as a product of the solutions for two plate
problems of thickness 2L1 and 2L2, respectively, as indicated by Equation (4-18).

In a manner similar to that described above, the solution for a three-dimensional block
may be expressed as a product of three infinite-plate solutions for plates having the thickness
of the three sides of the block. Similarly, a solution for a cylinder of finite length could be
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164 4-5 Multidimensional Systems

expressed as a product of solutions of the infinite cylinder and an infinite plate having
a thickness equal to the length of the cylinder. Combinations could also be made with
the infinite-cylinder and infinite-plate solutions to obtain temperature distributions in semi-
infinite bars and cylinders. Some of the combinations are summarized in Figure 4-18, where

C(
)= solution for infinite cylinder

P(X)= solution for infinite plate

S(X)= solution for semi-infinite solid

Figure 4-18 Product solutions for
temperatures in
multidimensional systems:
(a) semi-infinite plate;
(b) infinite rectangular bar;
(c) semi-infinite rectangular
bar; (d ) rectangular
parallelepiped;
(e) semi-infinite cylinder;
( f ) short cylinder.

P (X ) S (X1)

S (X ) P (X1) P (X2)

C (Θ) S (X )
C (Θ) P (X )

P (X1) P (X2) P (X3)
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The general idea is then(
θ

θi

)
combined

solid

=
(
θ

θi

)
intersection

solid 1

(
θ

θi

)
intersection

solid 2

(
θ

θi

)
intersection

solid 3

Heat Transfer in Multidimensional Systems

Langston [16] has shown that it is possible to superimpose the heat-loss solutions for one-
dimensional bodies, as shown in Figures 4-14, 4-15, and 4-16, to obtain the heat for a
multidimensional body. The results of this analysis for intersection of two bodies is(

Q

Q0

)
total

=
(
Q

Q0

)
1
+
(
Q

Q0

)
2

[
1 −

(
Q

Q0

)
1

]
[4-22]

where the subscripts refer to the two intersecting bodies. For a multidimensional body
formed by intersection of three one-dimensional systems, the heat loss is given by(
Q

Q0

)
total

=
(
Q

Q0

)
1
+
(
Q

Q0

)
2

[
1 −

(
Q

Q0

)
1

]
+
(
Q

Q0

)
3

[
1 −

(
Q

Q0

)
1

] [
1 −

(
Q

Q0

)
2

]

[4-23]

If the heat loss is desired after a given time, the calculation is straightforward. On the other
hand, if the time to achieve a certain heat loss is the desired quantity, a trial-and-error or
iterative procedure must be employed. The following examples illustrate the use of the
various charts for calculating temperatures and heat flows in multidimensional systems.

Semi-Infinite Cylinder Suddenly Exposed
to Convection EXAMPLE 4-8

A semi-infinite aluminum cylinder 5 cm in diameter is initially at a uniform temperature of 200◦C.
It is suddenly subjected to a convection boundary condition at 70◦C with h= 525 W/m2 · ◦C.
Calculate the temperatures at the axis and surface of the cylinder 10 cm from the end 1 min after
exposure to the environment.

Solution
This problem requires a combination of solutions for the infinite cylinder and semi-infinite slab in
accordance with Figure 4-18e. For the slab we have

x= 10 cm α= 8.4 × 10−5 m2/s k= 215 W/m · ◦C

so that the parameters for use with Figure 4-5 are

h
√
ατ

k
= (525)[(8.4 × 10−5)(60)]1/2

215
= 0.173

x

2
√
ατ

= 0.1

(2)[(8.4 × 10−5)(60)]1/2 = 0.704

From Figure 4-5 (
θ

θi

)
semi-infinite slab

= 1 − 0.036 = 0.964 = S(X)

For the infinite cylinder we seek both the axis- and surface-temperature ratios. The parameters
for use with Figure 4-8 are

r0 = 2.5 cm
k

hr0
= 16.38

ατ

r20

= 8.064
θ0

θi
= 0.38
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This is the axis-temperature ratio. To find the surface-temperature ratio, we enter Figure 4-l1, using

r

r0
= 1.0

θ

θ0
= 0.97

Thus

C(
)=
(
θ

θi

)
inf cyl

=
{

0.38 at r= 0
(0.38)(0.97)= 0.369 at r= r0

Combining the solutions for the semi-infinite slab and infinite cylinder, we have(
θ

θi

)
semi−infinite cylinder

= C(
)S(X)

= (0.38)(0.964)= 0.366 at r= 0

= (0.369)(0.964)= 0.356 at r= r0
The corresponding temperatures are

T = 70 + (0.366)(200 − 70)= 117.6 at r= 0

T = 70 + (0.356)(200 − 70)= 116.3 at r= r0

EXAMPLE 4-9

Finite-Length Cylinder Suddenly Exposed
to Convection

Ashort aluminum cylinder 5.0 cm in diameter and 10.0 cm long is initially at a uniform temperature
of 200◦C. It is suddenly subjected to a convection environment at 70◦C, and h= 525 W/m2 · ◦C.
Calculate the temperature at a radial position of 1.25 cm and a distance of 0.625 cm from one end
of the cylinder 1 min after exposure to the environment.

Solution
To solve this problem we combine the solutions from the Heisler charts for an infinite cylinder and
an infinite plate in accordance with the combination shown in Figure 4-18f. For the infinite-plate
problem

L= 5 cm

The x position is measured from the center of the plate so that

x= 5 − 0.625 = 4.375 cm
x

L
= 4.375

5
= 0.875

For aluminum
α= 8.4 × 10−5 m2/s k= 215 W/m · ◦C

so
k

hL
= 215

(525)(0.05)
= 8.19

ατ

L2
= (8.4 × 10−5)(60)

(0.05)2
= 2.016

From Figures 4-7 and 4-10, respectively,

θ0

θi
= 0.75

θ

θ0
= 0.95

so that (
θ

θi

)
plate

= (0.75)(0.95)= 0.7125

For the cylinder r0 = 2.5 cm

r

r0
= 1.25

2.5
= 0.5

k

hr0
= 215

(525)(0.025)
= 16.38
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ατ

r20

= (8.4 × 10−5)(60)

(0.025)2
= 8.064

and from Figures 4-8 and 4-11, respectively,

θ0

θi
= 0.38

θ

θ0
= 0.98

so that (
θ

θi

)
cyl

= (0.38)(0.98)= 0.3724

Combining the solutions for the plate and cylinder gives(
θ

θi

)
short cylinder

= (0.7125)(0.3724)= 0.265

Thus
T = T∞ + (0.265)(Ti− T∞)= 70 + (0.265)(200 − 70)= 104.5◦C

Heat Loss for Finite-Length Cylinder EXAMPLE 4-10

Calculate the heat loss for the short cylinder in Example 4-9.

Solution
We first calculate the dimensionless heat-loss ratio for the infinite plate and infinite cylinder that
make up the multidimensional body. For the plate we haveL= 5 cm = 0.05 m. Using the properties
of aluminum from Example 4-9, we calculate

hL

k
= (525)(0.05)

215
= 0.122

h2ατ

k2
= (525)2(8.4 × 10−5)(60)

(215)2
= 0.03

From Figure 4-14, for the plate, we read(
Q

Q0

)
p

= 0.22

For the cylinder r0 = 2.5 cm = 0.025 m, so we calculate

hr0

k
= (525)(0.025)

215
= 0.061

and from Figure 4-15 we can read (
Q

Q0

)
c

= 0.55

The two heat ratios may be inserted in Equation (4-22) to give(
Q

Q0

)
tot

= 0.22 + (0.55)(1 − 0.22)= 0.649

The specific heat of aluminum is 0.896 kJ/kg · ◦C and the density is 2707 kg/m3, so we calculate
Q0 as

Q0 = ρcVθi = (2707)(0.896)π(0.025)2(0.1)(200 − 70)

= 61.9 kJ
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The actual heat loss in the 1-min time is thus

Q= (61.9 kJ)(0.649)= 40.2 kJ

4-6 TRANSIENT NUMERICAL METHOD
The charts described in Sections 4-4 and 4-5 are very useful for calculating temperatures
in certain regular-shaped solids under transient heat-flow conditions. Unfortunately, many
geometric shapes of practical interest do not fall into these categories; in addition, one is
frequently faced with problems in which the boundary conditions vary with time. These
transient boundary conditions as well as the geometric shape of the body can be such that
a mathematical solution is not possible. In these cases, the problems are best handled by
a numerical technique with computers. It is the setup for such calculations that we now
describe. For ease in discussion we limit the analysis to two-dimensional systems. An
extension to three dimensions can then be made very easily.

Consider a two-dimensional body divided into increments as shown in Figure 4-19.
The subscript m denotes the x position, and the subscript n denotes the y position. Within
the solid body the differential equation that governs the heat flow is

k

(
∂2T

∂x2
+ ∂2T

∂y2

)
= ρc ∂T

∂τ
[4-24]

assuming constant properties. We recall from Chapter 3 that the second partial derivatives
may be approximated by

∂2T

∂x2
≈ 1

(�x)2
(Tm+1,n+ Tm−1,n− 2Tm,n) [4-25]

∂2T

∂y2
≈ 1

(�y)2
(Tm,n+1 + Tm,n−1 − 2Tm,n) [4-26]

Figure 4-19 Nomenclature for numerical
solution of two-dimensional
unsteady-state conduction
problem.
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The time derivative in Equation (4-24) is approximated by

∂T

∂τ
≈ T

p+1
m,n − Tpm,n
�τ

[4-27]

In this relation the superscripts designate the time increment. Combining the relations above
gives the difference equation equivalent to Equation (4-24)

T
p

m+1,n+ Tpm−1,n− 2Tpm,n

(�x)2
+ T

p

m,n+1 + Tpm,n−1 − 2Tpm,n

(�y)2
= 1

α

T
p+1
m,n − Tpm,n
�τ

[4-28]

Thus, if the temperatures of the various nodes are known at any particular time, the
temperatures after a time increment �τ may be calculated by writing an equation like
Equation (4-28) for each node and obtaining the values of Tp+1

m,n . The procedure may be
repeated to obtain the distribution after any desired number of time increments. If the
increments of space coordinates are chosen such that

�x=�y
the resulting equation for Tp+1

m,n becomes

Tp+1
m,n = α�τ

(�x)2

(
T
p

m+1,n+ Tpm−1,n+ Tpm,n+1 + Tpm,n−1

)
+
[

1 − 4α�τ

(�x)2

]
Tpm,n [4-29]

If the time and distance increments are conveniently chosen so that

(�x)2

α�τ
= 4 [4-30]

it is seen that the temperature of node (m, n) after a time increment is simply the arithmetic
average of the four surrounding nodal temperatures at the beginning of the time increment.

When a one-dimensional system is involved, the equation becomes

Tp+1
m = α�τ

(�x)2

(
T
p

m+1 + Tpm−1

)+
[

1 − 2α�τ

(�x)2

]
Tpm [4-31]

and if the time and distance increments are chosen so that
(�x)2

α�τ
= 2 [4-32]

the temperature of nodem after the time increment is given as the arithmetic average of the
two adjacent nodal temperatures at the beginning of the time increment.

Some general remarks concerning the use of numerical methods for solution of transient
conduction problems are in order at this point. We have already noted that the selection of
the value of the parameter

M= (�x)2

α�τ

governs the ease with which we may proceed to effect the numerical solution; the choice
of a value of 4 for a two-dimensional system or a value of 2 for a one-dimensional system
makes the calculation particularly easy.

Once the distance increments and the value of M are established, the time increment
is fixed, and we may not alter it without changing the value of either �x or M, or both.
Clearly, the larger the values of �x and �τ, the more rapidly our solution will proceed.
On the other hand, the smaller the value of these increments in the independent variables,
the more accuracy will be obtained. At first glance one might assume that small distance
increments could be used for greater accuracy in combination with large time increments
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