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4-3 Transient Heat Flow in a Semi-Infinite Solid

Figure 4-3 | Nomenclature for transient
heat flow in a semi-infinite
solid.

s x

seek an expression for the temperature distribution in the solid as a function of time. This
temperature distribution may subsequently be used to calculate heat flow at any x position
in the solid as a function of time. For constant properties, the differential equation for the
temperature distribution 7(x, 7) is
3T 19T
x2  adr

[4-7]

The boundary and initial conditions are
T(x,0)=T;
T(0,7) =Ty fort>0

Thisis a problem that may be solved by the Laplace-transform technique. The solution is

given in Reference 1 as
T — T
(0010 _ g _X [4-8]
T, — To 2Juat

where the Gauss error function is defined as
X 2 (YW,
=— “Td 4-9
2Jat /7w ¢ 7 [4-9]
It will be noted that in this definition n isadummy variable and the integral isafunction of

its upper limit. When the definition of the error function isinserted in Equation (4-8), the
expression for the temperature distribution becomes

Tx,)—To 2 (Y2
1

erf

The heat flow at any x position may be obtained from

=—kA—
9 ox

Performing the partial differentiation of Equation (4-10) gives

oT 2 2 ad X
T o gy 2 ptar O 4-11
ox (T O)ﬁe ox (2«/0:1:) [4-11]
=T,y
ot
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Figure 4-4 | Response of semi-infinite solid to (a) sudden change in surface temperature and
(b) instantaneous surface pulse of Qg/A JmZ.
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At the surface (x = 0) the heat flow is
kA(To—T;)
qo=———" [4-12]
ToT

The surface heat flux is determined by evaluating the temperature gradient at x =0 from
Equation (4-11). A plot of the temperature distribution for the semi-infinite solid is given
in Figure 4-4. Vaues of the error function are tabulated in Reference 3, and an abbreviated
tabulation is given in Appendix A.

Constant Heat Flux on Semi-Infinite Solid

For the same uniform initial temperature distribution, we could suddenly expose the surface
to aconstant surface heat flux go/A. Theinitial and boundary conditions on Equation (4-7)
would then become

T(x,0)=T;
oT
0 _ —k — fort>0
A 8x =0

The solution for this caseis

2T o =

qox x
T—T, 0N e 413
=T kA 40(1) KA < « 2«/_051) [4-13a]

Energy Pulse at Surface

Equation (4-13a) presentsthe temperature response that results from asurface heat flux that
remains constant with time. A related boundary condition is that of a short, instantaneous
pulse of energy at the surface having a magnitude of Qp/A. The resulting temperature
responseis given by

T —T; = [Qo/ Apc(at)/?] exp(—x?/4ar) [4-130]
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4-3 Transient Heat Flow in a Semi-Infinite Solid

In contrast to the constant-heat-flux case where the temperature increases indefinitely for
all x and times, the temperature response to the instantaneous surface pulse will die out with
time, or

T—T;— Oforadl xast— oo

Thisrapid exponential decay behavior isillustrated in Figure 4-4b.

Semi-Infinite Solid with Sudden Change

EXAMPLE 4-2 in Surface Conditions

Alargeblock of steel [k =45W/m - °C, o = 1.4 x 10~° m?/g] isinitially at auniform temperature
of 35°C. The surface is exposed to a heat flux (a) by suddenly raising the surface temperature to
250°C and (b) through a constant surface heat flux of 3.2 x 10° W/m?. Calculate the temperature
at adepth of 2.5 cm after atime of 0.5 min for both these cases.

H Solution
We can make use of the solutions for the semi-infinite solid given as Equations (4-8) and (4-13a).

For caseq,
0.025

X
2Jat  (2[(L4x 10-5)30)7/2

The error function is determined from Appendix A as

0.61

erf =erf 0.61=0.61164

X
2./ at
We have T; =35°C and Tp=250°C, so the temperature at x=2.5 cm is determined from
Equation (4-8) as

X
T =T T; — Tp) erff ——
(x, ) =To+ (T; — To) 2 Jat
= 250+ (35— 250)(0.61164) = 118.5°C

For the constant-heat-flux case b, we make use of Equation (4-13a). Since ¢g/A is given as
3.2 x 10° W/m?, we can insert the numerical valuesto give

(2)(3.2 x 10°)[(1.4 x 10°)(30) /7112 ,— (05612
45
_ (0.025)(3.2x 10°)
45
=793°C x=25cm,t=30s

T(x,7) =35+

(1-0.61164)

For the constant-heat-flux case the surface temperature after 30 s would be evaluated with x =0
in Equation (4-13a). Thus,

(2)(3.2 x 10°)[(1.4 x 1075)(30) /7] 1/2

T(x=0)=35
x=0)=35+ 45

=199.4°C

Pulsed Energy at Surface of Semi-Infinite Solid

An instantaneous laser pulse of 10 MJIm?2 isimposed on aslab of stainless steel having properties
of p=7800kg/m3, ¢ = 460 JKg - °C, and o = 0.44 x 10~° m?/s. Theslabisinitially at auniform
temperature of 40 °C. Estimate the temperature at the surface and at adepth of 2.0 mm after atime
of 2s.
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B Solution
This problem is adirect application of Equation (4-13b). We have Qg/A = 107 JmZ and at x =0

To — T; = Qo/Apc(man)™-?
= 107/(7800) (460)[(0.44 x 10~2)(2)]%° = 530°C

and
Tp = 40+ 530 =570°C
Atx =2.0mm=0.002m,
T — T; = (530)exp[— (0.002)2/(4)(0.44 x 10~°)(2)] = 473°C
and

T =40+ 473=513°C

Heat Removal from Semi-Infinite Solid EXAMPLE 4-4

A large slab of aluminum at a uniform temperature of 200°C suddenly hasits surface temperature
lowered to 70°C. What is the total heat removed from the slab per unit surface area when the
temperature at a depth 4.0 cm has dropped to 120°C?

B Solution
Wefirst find the time required to attain the 120°C temperature and then integrate Equation (4-12)
to find the total heat removed during this time interval. For aluminum,

a=84x10"°m?/s  k=215W/m-°C[124Btu/h-ft-°F]

We also have

T; =200°C To=70°C T(x, v)=120°C

Using Equation (4-8) gives

;gg — ;8 =ef 25057 =0.3847
From Figure 4-4 or Appendix A, .
2at =0.3553
and
(0.04)2

=37.72s

=
(4)(0.3553)2(8.4 x 10—°)
The total heat removed at the surface is obtained by integrating Equation (4-12):

7 T k(To—T;
@:f @dfzf Mdr=2k(To—Ti)\/z
A 0o A 0 <mat T

37.72

1/2
7] —21.13x 10% ym? [-1861 Btu/ft?]
(8.4 x 10—°)

= (2)(215)(70 — 200) [

4-4 | CONVECTION BOUNDARY CONDITIONS

In most practical situations the transient heat-conduction problem is connected with a con-
vection boundary condition at the surface of the solid. Naturally, the boundary conditions
for the differential equation must be modified to take into account this convection heat
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4-4 Convection Boundary Conditions

transfer at the surface. For the semi-infinite-solid problem, the convection boundary con-
dition would be expressed by

Heat convected into surface = heat conducted into surface
or
oT
hA(Too — D=0 =—kA —] [4-14]
x x=0

The solution for this problem is rather involved and is worked out in detail by Schneider
[1]. Theresultis

_T. 2
T T’_:l-erfx—[exp<};—x+%)}x[l—erf(x+wf>] [4-15]

T —T;
where
X =x/(2/at)

T; = initial temperature of solid
o = environment temperature

This solution is presented in graphical form in Figure 4-5.

Solutions have been worked out for other geometries. The most important cases are
those dealing with (1) plates whose thicknessis small in relation to the other dimensions,
(2) cylinders where the diameter is small compared to the length, and (3) spheres. Results
of analyses for these geometries have been presented in graphical form by Heiser [2],
and nomenclature for the three casesisillustrated in Figure 4-6. In all cases the convection
environment temperatureisdesignated as T, and the center temperaturefor x =0or r = 0is
Tp.Attimezero, each solidisassumedto haveauniforminitial temperature 7;. Temperatures
in the solids are given in Figures 4-7 to 4-13 as functions of time and spatial position. In
these charts we note the definitions

0=Tx,17) — T or T(r,7) — T
6:=Ti — T
bo=To— T

If acenterline temperature is desired, only one chart isrequired to obtain avalue for 6 and
then Tp. To determine an off-center temperature, two charts are required to calculate the
product

For exampl e, Figures4-7 and 4-10 would be employed to cal cul ate an of f-center temperature
for an infinite plate.

The heat losses for the infinite plate, infinite cylinder, and sphere are given in
Figures 4-14 to 4-16, where Qg representsthe initial internal energy content of the body in
reference to the environment temperature

Qo= pcV(T; — Too) = pcVb; [4-16]

In these figures Q isthe actua heat lost by the body intime 7.
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Figure 4-5 | Temperature distribution in the semi-infinite solid with convection boundary condition.
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Figure 4-6 | Nomenclature for one-dimensional solids suddenly subjected to convection
environment at 7o (a) infinite plate of thickness 2L; (b) infinite cylinder of
radius rg; (c) sphere of radius rg.
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Figure 4-7 | (Continued). (b) expanded scale for 0 < Fo < 4, from Reference 2.
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If one considersthesolid asbehaving asalumped capacity during the cooling or heating
process, that is, small internal resistance compared to surface resistance, the exponential
cooling curve of Figure 4-5 may be replotted in expanded form, as shown in Figure 4-13
using the Biot-Fourier product as the abscissa. We note that the following parameters apply
for the bodies considered in the Heisler charts.

(A/V)int plate = L
(AV)inf cylinder = 2/ro
(A/V)sphere =3ro

Obvioudly, there are many other practical heating and cooling problems of interest. The
solutions for alarge number of cases are presented in graphical form by Schneider [7], and
readers interested in such calculations will find this reference to be of great utility.

TheBiot and Fourier Numbers

A quick inspection of Figures 4-5 to 4-16 indicates that the dimensionless temperature
profiles and heat flows may all be expressed in terms of two dimensionless parameters
called the Biot and Fourier numbers:

. . h
Biot number = Bi = %
. ot kt
Fourier number = Fo= — = —
s2 pes?

In these parameters s designates a characteristic dimension of the body; for the plateit is
the half-thickness, whereas for the cylinder and sphere it is the radius. The Biot humber
comparestherelative magnitudes of surface-convection andinternal-conduction resistances
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Figure 4-8 | (Continued). (b) expanded scale for 0 < Fo < 4, from Reference 2.
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to heat transfer. The Fourier modulus compares a characteristic body dimension with an
approximate temperature-wave penetration depth for agiven time 7.

A very low vaue of the Biot modulus means that internal-conduction resistance is
negligible in comparison with surface-convection resistance. This in turn implies that the
temperature will be nearly uniform throughout the solid, and its behavior may be approxi-
mated by the lumped-capacity method of analysis. It isinteresting to note that the exponent
of Equation (4-5) may be expressed in terms of the Biot and Fourier numbers if one takes
theratio V/A asthe characteristic dimension s. Then,

hA _ ht  hs kt

—VT— =Bi Fo
ol

ocs % ocs?

Applicability of the Heisler Charts

The calculations for the Heisler charts were performed by truncating the infinite series
solutions for the problems into afew terms. This restricts the applicability of the charts to
values of the Fourier number greater than 0.2.

Fo=%'-02

2

S
For smaller values of this parameter the reader should consult the solutionsand charts given
in the references at the end of the chapter. Cal culations using the truncated series solutions
directly are discussed in Appendix C.
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Figure 4-9 | (Continued). (b) expanded scale for 0 < Fo < 3, from Reference 2.
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Figure 4-10 | Temperature as afunction of center temperature in an
infinite plate of thickness 2L, from Reference 2.
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Figure 4-11 | Temperature as afunction of axis temperaturein an
infinite cylinder of radius rqg, from Reference 2.
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Figure 4-12 | Temperature as afunction of center temperature for a
sphere of radius rg, from Reference 2.
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Figure 4-13 | Temperature variation with time for solids that may be

ol

(b)

treated as lumped capacities. (a) 0 < BiFo < 10,
(b) 0.1 <BiFo< 1.0, (c) 0<BiFo<0.1.

Note: (AV)inf plate =1/ L, (A/V)inf cyl = 2/ro,
(A/V)sphere = 3fro. See Equations (4-5) and (4-6).
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Figure 4-14 | Dimensionless heat 1oss O/ Qg of an infinite plane of thickness 2L with time,

Figure 4-13 | (Continued).
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Figure 4-15 | Dimensionlesss heat l0ss O/ Qg of an infinite cylinder of radius rg with time,
from Reference 6.
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Figure 4-16 | Dimensionless heat loss Q/ Q¢ of a sphere of radius rg with time, from

Reference 6.
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Sudden Exposure of Semi-Infinite

Slab to Convection EXAMPLE 4-5

The slab of Example 4-4 is suddenly exposed to a convection-surface environment of 70°C with
a heat-transfer coefficient of 525 W/ m? . °C. Calculate the time required for the temperature to
reach 120°C at the depth of 4.0 cm for this circumstance.

B Solution

We may use either Equation (4-15) or Figure 4-5 for solution of this problem, but Figure 4-5 is
easier to apply because the time appears in two terms. Even when the figure is used, an iterative
procedure is required because the time appears in both of the variables r/at/k and x/(2./at).
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We seek the value of ¢ such that

T—T; 120—200
Too —T;  70—200

=0.615 [a]

We therefore try values of t and obtain readings of the temperature ratio from Figure 4-5 until
agreement with Equation (a) is reached. The iterations are listed below. Values of k and « are

obtained from Example 4-4.
hJat X T-T; .
s k et Too T from Figure 4-5
1000 0.708  0.069 0.41
3000 1.226 0.040 0.61
4000 1416 0.035 0.68

Consequently, the time required is approximately 3000 s.

Aluminum Plate Suddenly Exposed to Convection

Alargeplateof aluminum 5.0 cmthick andinitially at 200°C issuddenly exposed to the convection
environment of Example 4-5. Calcul ate the temperature at adepth of 1.25 cm from one of thefaces
1 min after the plate has been exposed to the environment. How much energy has been removed
per unit area from the plate in this time?

B Solution

The Heidler charts of Figures 4-7 and 4-10 may be used for solution of this problem. We first
calculate the center temperature of the plate, using Figure4-7, and then use Figure 4-10to cal cul ate
the temperature at the specified x position. From the conditions of the problem we have

0 =T, —Too=200—70=130 o=84x10"°"m%s [3.26ft¥h]
2L =5.0cm L=25cm t=1min=60s

k=215W/m-°C [124 Btu/h-ft- °F]

h=525W/m2.°C [92.5Btu/h-ft . °F]

x=25-125=125cm

Then
at (8.4 x 107°)(60) k 215
ar _ — Y _8064 @ — =" _ _16.38
L2 (0.025)2 hL — (525)(0.025)
x 125
Z=""-05
L 25
From Figure 4-7
% _ o061
0.

1

0 = To — Too = (0.61)(130) = 79.3
From Figure 4-10 at x/L = 0.5,
— =0.98
and
0=T — Too =(0.98)(79.3) = 77.7
T =77.7+70=147.7°C
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We compute the energy lost by the slab by using Figure 4-14. For this calculation we require the
following properties of aluminum:

p=2700kgm®  ¢=0.9kJ/kg-°C

For Figure 4-14 we need
h?2 525)2(8.4 x 10°)(60 hL  (525)(0.025
ot _ 527 @AxI07NE0) _ 3 AL _ODOD) 456
k2 (215)2 k 215
From Figure 4-14
L _om
0o
For unit area
(0] pcVo;
70 = S = pe@L)f;
= (2700)(900)(0.05)(130)
= 15.8 x 10% ym?

so that the heat removed per unit surface areais

% = (15.8 x 10°)(0.41) = 6.48 x 106 I/m?  [571 Btu/ft?]

Long Cylinder Suddenly Exposed to Convection

A long aluminum cylinder 5.0 cm in diameter and initially at 200°C is suddenly exposed to a
convection environment at 70°C and /1 = 525 W/m? - °C. Calculate the temperature at aradius of
1.25 cm and the heat lost per unit length 1 min after the cylinder is exposed to the environment.

H Solution

This problem is like Example 4-6 except that Figures 4-8 and 4-11 are employed for the solution.
We have

0i=T,— Too =200—70=130 a=84x10"°m%/s
ro=2.5cm t=1min=60s

k=215W/m-°C  h=525W/m?.°C  r=125cm
p=2700kg/m®  ¢=0.9kJkg-°C

We compute
8.4 x 10°)(60 k 215
or _GAxD VOO _goea K25 63
5 (0.025) hrg  (525)(0.025)
r_L12_ g
ro 25
From Figure 4-8
0—0 =0.38
0;
and from Figures 4-11 at r/rg=0.5
[%

161
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so that

2 = 9—0 i =(0.38)(0.98) =0.372
0; 6; 6

and
0=T — Too = (0.372)(130) = 48.4
T =70+48.4=118.4°C
To compute the heat lost, we determine

h2atr  (525)%(8.4 x 107°)(60) hrg  (525)(0.025)

— =003 —="T " _0061
k2 (215)2 k 215
Then from Figure 4-15
92 _oes
Qo
For unit length
Vo,
% L CL L = perrrd6; = (2700)(900)7(0.025)2(130) = 6.203 x 10° Im

and the actual heat lost per unit length is

% = (6.203 x 10°)(0.65) =4.032 x 10° Jm  [116.5 Btu/ft]

4-5 | MULTIDIMENSIONAL SYSTEMS

The Heidler charts discussed in Section 4-4 may be used to obtain the temperature distri-
bution in the infinite plate of thickness 2L, in the long cylinder, or in the sphere. When a
wall whose height and depth dimensions are not large compared with the thickness or a
cylinder whose length is not large compared with its diameter is encountered, additional
space coordinates are necessary to specify the temperature, the charts no longer apply, and
we are forced to seek another method of solution. Fortunately, it is possible to combine the
solutionsfor the one-dimensional systemsin avery straightforward way to obtain solutions
for the multidimensional problems.

It is clear that the infinite rectangular bar in Figure 4-17 can be formed from two
infinite plates of thickness 2L1 and 2L, respectively. The differential equation governing
this situation would be

T 9°T 19T
x2 972 ot

[4-17]

and to use the separation-of-variables method to effect a solution, we should assume a
product solution of the form

T(x,z,7) =X(x)Z(2)O(7)

It can be shown that the dimensionless temperature distribution may be expressed as a
product of the solutions for two plate problems of thickness 2L, and 2L, respectively:

<T—Too> _(T_Too> (T—Too) [4-18]
T — T bar T —Tw 2L1 plate Ti = Too 2Ly plate

where T; isthe initial temperature of the bar and T, is the environment temperature.
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Figure 4-17 | Infinite rectangular bar.

ke sz/
2L1\|/

For two infinite plates the respective differential equationswould be

PT1 10Ty °T> 19T

=—— =—— 4-19
2 o 072 o ot [4-19]

and the product solutions assumed would be
N=Ti(x,7) T2=T2z,7) [4-20]

We shall now show that the product solution to Equation (4-17) can beformed fromasimple
product of the functions (T, T2), that is,

T(x,z, 1) =T1(x, 1) T2(z, T) [4-21]

The appropriate derivatives for substitution in Equation (4-17) are obtained from Equa-
tion (4-21) as
3°T 3°Ty 3°T 3°T>
—=Tr—= —=T1—
Ax2 ax2 072 dz2
oT oT» 0Ty

Tt aT, =
ot tar T2,

Using Equations (4-19), we have

Substituting these relations in Equation (4-17) gives

- %1, LT 2T, 1 - 92T T %1,
—_— —_—— — o —_— o —_—
Zoxy 122 Y2 T a2
or the assumed product solution of Equation (4-21) does indeed satisfy the original dif-
ferential equation (4-17). This means that the dimensionless temperature distribution for
the infinite rectangular bar may be expressed as a product of the solutions for two plate
problems of thickness 2L, and 2L, respectively, asindicated by Equation (4-18).
Inamanner similar to that described above, the solution for athree-dimensional block
may be expressed asaproduct of threeinfinite-plate solutionsfor plateshaving thethickness
of the three sides of the block. Similarly, a solution for a cylinder of finite length could be
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expressed as a product of solutions of the infinite cylinder and an infinite plate having
a thickness equal to the length of the cylinder. Combinations could also be made with
the infinite-cylinder and infinite-plate solutions to obtain temperature distributionsin semi-
infinite bars and cylinders. Some of the combinations are summarizedin Figure 4-18, where

C(®) = solution for infinite cylinder
P(X) = solution for infinite plate
S(X) = solution for semi-infinite solid

Figure 4-18 | Product solutions for
temperaturesin
multidimensional systems:
(a) semi-infinite plate;

(b) infinite rectangular bar;
(c) semi-infinite rectangular
bar; (d) rectangular
parallelepiped;

(e) semi-infinite cylinder;
(f) short cylinder.

P (X) S (Xy) P (X1) S (X3)

s

— 2L ,—> Py | 2L

@ (b)
S(X)P (XD P (Xp) P (X)) P (X2) P (X3)
<]
2L,

2L, |‘{: L;D‘l 2Ly
(© (d)
C©)sX) COPX)

A

e S o
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The general ideaisthen

0 e 0 0
. | combined — \ g. J intersection \ g. / intersection \ g. ) intersection
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solid

Heat Transfer in Multidimensional Systems

Langston [16] has shown that it is possible to superimpose the heat-loss solutions for one-
dimensiona bodies, as shown in Figures 4-14, 4-15, and 4-16, to obtain the heat for a
multidimensional body. The results of this analysis for intersection of two bodiesis

E-@AQLE) e

where the subscripts refer to the two intersecting bodies. For a multidimensional body
formed by intersection of three one-dimensional systems, the heat lossis given by

(&) (8 (S BN (3)

If the heat |ossis desired after agiven time, the calculation is straightforward. On the other
hand, if the time to achieve a certain heat loss is the desired quantity, a trial-and-error or
iterative procedure must be employed. The following examples illustrate the use of the
various charts for calculating temperatures and heat flowsin multidimensional systems.

Semi-Infinite Cylinder Suddenly Exposed

to Convection EXAMPLE 4-8

A semi-infinite aluminum cylinder 5 cmin diameter isinitially at a uniform temperature of 200°C.
It is suddenly subjected to a convection boundary condition at 70°C with 7 =525 W/m? - °C.
Calculate the temperatures at the axis and surface of the cylinder 10 cm from the end 1 min after
exposure to the environment.

B Solution
This problem requires a combination of solutions for the infinite cylinder and semi-infinite slab in
accordance with Figure 4-18e. For the slab we have

x=10cm @=84x10"°m%s  k=215W/m-°C

so that the parameters for use with Figure 4-5 are

hyet _ (525)[(8.4 x 10~°)(60)]%/2
=

215 =0.173

X 0.1
2/ar ~ DI@4Ax 10502 1%

From Figure 4-5

0
<—> =1-0.036=0.964= S(X)
6i / semi-infinite slab
For theinfinite cylinder we seek both the axis- and surface-temperature ratios. The parameters
for use with Figure 4-8 are

k 9
ro=25cm  — —1638 2L_g80s4 2—038
hro rg 0;
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Thisisthe axis-temperatureratio. To find the surface-temperatureratio, we enter Figure4-11, using
% =10 % =097
Thus 0 0.38 0
C(®)= (@) inf oyl = { (6,38)(0.97) =0.369 ?:t rr;ro

Combining the solutions for the semi-infinite slab and infinite cylinder, we have
0
(—) =C(®)S(X)
6i /) semi—infinite cylinder
= (0.38)(0.964)=0.366 atr=0
= (0.369)(0.964) =0.356 atr=rg

The corresponding temperatures are

T =70+ (0.366)(200—70) = 1176 atr=0
T =70+ (0.356)(200—70) =116.3 atr=rg

Finite-Length Cylinder Suddenly Exposed

EXAMPLE 4-9 to Convection

A short aluminum cylinder 5.0 cmin diameter and 10.0cmlongisinitially at auniform temperature
of 200°C. It is suddenly subjected to a convection environment at 70°C, and & = 525 W/m2 -°C.
Calculate the temperature at aradial position of 1.25 cm and a distance of 0.625 cm from one end
of the cylinder 1 min after exposure to the environment.

B Solution
To solve this problem we combine the solutions from the Heisler chartsfor an infinite cylinder and
an infinite plate in accordance with the combination shown in Figure 4-18f. For the infinite-plate
problem

L=5cm

The x position is measured from the center of the plate so that

4.375
x=5-0625=4375cm +=-""_0875
L 5
For aluminum
a=84x10°m%s k=215W/m.°C
= 5,
k 215 8.4 x 1075)(60
g1g oL BAxI0NO0 _, 6

hL ~ (525)(0.05)
From Figures 4-7 and 4-10, respectively,

L2 (0.05)2

% =0.75 9 =0.95
0; 6o
so that )
<—> = (0.75)(0.95) = 0.7125
bi plate
For the cylinder ro=2.5cm
oI 45 K 25 _ 1638

o 25 hro  (525)(0.025)
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—5
oz_‘zt _ (8.4 x 10~2)(60) —8.064
r§ (0.025)2
and from Figures 4-8 and 4-11, respectively,
0,
% o3 L _ogs
0; to

S0 that 9
(—) =(0.38)(0.98) = 0.3724
6i ) oy

i
Combining the solutions for the plate and cylinder gives

<2> =(0.7125)(0.3724) = 0.265
6; / short cylinder

Thus
T = Too + (0.265)(T; — Tro) = 70+ (0.265) (200 — 70) = 104.5°C

Heat Loss for Finite-Length Cylinder

Calculate the heat loss for the short cylinder in Example 4-9.

H Solution

We first calculate the dimensionless heat-loss ratio for the infinite plate and infinite cylinder that
make up the multidimensional body. For the platewe have L =5 cm = 0.05m. Using the properties
of auminum from Example 4-9, we calculate

hL _ (525)(0.05)

= =0.122
k 215 0

h2et  (525)%(8.4 x 10~°)(60)

=0.03
k2 (215)2

From Figure 4-14, for the plate, we read

(£> =0.22
Qo/p

For the cylinder rg = 2.5 cm = 0.025 m, so we calculate
hrg _ (525)(0.025)
k 215
and from Figure 4-15 we can read
<g) =0.55
Qo/.

The two heat ratios may be inserted in Equation (4-22) to give

=0.061

(2) — 0.22+ (0.55)(1 — 0.22) = 0.649
00/ tot

The specific heat of aluminum is 0.896 kJ/kg - °C and the density is 2707 kg/m3, so we calculate
Qpas

0o = pcVO; = (2707)(0.896)7(0.025)2(0.1) (200 — 70)
= 61.9kJ
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The actual heat lossin the 1-min timeis thus
0 =(61.9kJ)(0.649) = 40.2 kJ

4-6 | TRANSIENT NUMERICAL METHOD

The charts described in Sections 4-4 and 4-5 are very useful for calculating temperatures
in certain regular-shaped solids under transient heat-flow conditions. Unfortunately, many
geometric shapes of practical interest do not fall into these categories; in addition, one is
frequently faced with problems in which the boundary conditions vary with time. These
transient boundary conditions as well as the geometric shape of the body can be such that
a mathematical solution is not possible. In these cases, the problems are best handled by
a numerical technique with computers. It is the setup for such calculations that we now
describe. For ease in discussion we limit the analysis to two-dimensional systems. An
extension to three dimensions can then be made very easily.

Consider a two-dimensional body divided into increments as shown in Figure 4-19.
The subscript m denotes the x position, and the subscript » denotes the y position. Within
the solid body the differential equation that governs the heat flow is

2T 92T aT
k(== + 2= )= pc — 4-24
<8x2 * 8y2> pe at [ ]

assuming constant properties. We recall from Chapter 3 that the second partia derivatives
may be approximated by

a°T 1
W2 ~ W(Tm+l,n +Tn—1n —2T,n) [4-25]
9T 1
V ~ (A—y)z(Tm,n+l + Tm,n—l - 2Tm,n) [4'26]

Figure 4-19 | Nomenclature for numerical
solution of two-dimensional
unsteady-state conduction

problem.
m, n+ 1
t
Ay
m—-1,nf m,n |m+1n i
t
Ay
m, n— 1 i
— AX >l AX |
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The time derivative in Equation (4-24) is approximated by
oT _ThL -Th,
ar At

Inthisrelation the superscripts designate thetimeincrement. Combining therel ations above
gives the difference equation equivalent to Equation (4-24)
P p 14 p P P 1
Tm+1,n + Tm—l,n - 2Tm»” Tm,n+1 +1T, n—1" ZTm’” 1 Tnllj,tl - Trg,n

(Ax)2 (Ay)2 T« At [4-28]

[4-27]

Thus, if the temperatures of the various nodes are known at any particular time, the
temperatures after a time increment At may be calculated by writing an equation like
Equation (4-28) for each node and obtaining the values of T,{ijll. The procedure may be
repeated to obtain the distribution after any desired number of time increments. If the
increments of space coordinates are chosen such that

Ax= Ay

the resulting equation for 7.2 ,* becomes

+1_ AAT (op P P P 4o At
Tﬂ]i,ﬂ - (Ax)z (Tm—i-l,n + Tm—l,n + Tm,n+l + Tm,n—l) + |:1 - (Ax)z Tr{:,n [4'29]
If the time and distance increments are conveniently chosen so that
Ax)2
(AV7_4 [4-30]
a At

it is seen that the temperature of node (m, n) after atimeincrement issimply the arithmetic
average of the four surrounding nodal temperatures at the beginning of the time increment.
When aone-dimensional system isinvolved, the equation becomes

41 aAT o, » 20 At
Tn[; - (AX)Z (Tm+1 + Tm—l) + [1_ (Ax)2

TP [4-31]

and if the time and distance increments are chosen so that

2
(A07_, [4-32]

a At

the temperature of node m after the timeincrement is given asthe arithmetic average of the
two adjacent nodal temperatures at the beginning of the time increment.

Somegeneral remarks concerning the use of numerical methodsfor solution of transient
conduction problems are in order at this point. We have already noted that the selection of
the value of the parameter

(Ax)?
M=
o At

governs the ease with which we may proceed to effect the numerical solution; the choice
of avaue of 4 for atwo-dimensional system or avalue of 2 for a one-dimensional system
makes the calculation particularly easy.

Once the distance increments and the value of M are established, the time increment
is fixed, and we may not alter it without changing the value of either Ax or M, or both.
Clearly, the larger the values of Ax and Az, the more rapidly our solution will proceed.
On the other hand, the smaller the value of these increments in the independent variables,
the more accuracy will be obtained. At first glance one might assume that small distance
increments could be used for greater accuracy in combination with large time increments




