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Fundamentals of Heat Transfer

Conduction, Convection, and Radiation Heat Transfer Mode

Ref. ID Figure 1.1 (p 2)

Heat transfer (or heat) is thermal energy in transit due to a temperature difference

Conduction through a solid
or a stationary fluid

Convection from a surface
to a moving fluid

Net radiation heat exchange
between two surfaces

TA > T;c

* Moving fluid, 7.




Conduction Heat Transfer

First mechanism - molecular interaction (e.g. gas)
*Greater motion of molecule at higher energy level
(temperature) imparts energy to adjacent molecules at
lower energy levels

«Second mechanism — by free electrons (e.g. solid)

A kdx’A VT



Thermal Conductivity

» Physical origins and rate equation

* (Ref. ID; Figure 1.2) Association of conduction heat transfer with
diffusion energy due to molecular activities.




Thermal Conductivity of Gas

Estimation of the thermal conductivity of gas
Ref. WWWR pp202-203 (Self Study)

Derived from the gas Kkinetic theory:

(1) Considering the summation of the energy flux associated with the
molecules crossing the control surface;

(2) The number of molecules involved is related to average random
molecular velocity.

(3) x: Boltzmann constant, d: molecular diameter, m: mass per molecule.

k = \/KBT/m [Unit = W/(m-K)]
15d2




Thermal Conductivity of Solid

Estimation of the thermal conductivity of solid
Ref. WWWR pp204 (Self Study)

(1) Derived from the Wiedemann, Franz, Lorenz Equation (1872).

(2) The free electron mechanism of heat conduction is directly analogous
to the mechanism of electric conduction.

K, : electrical conductivity [unit = 1/(Q2-m)], T: absolute temperature (unit
= K), L: Lorenz number.

L= K —constant =2.45 108w QIK2@200C
keT
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Figure 15,2 Thermal conductivity of several materials at various temperatures.
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FIGURE 1.3
One-dimensional heat
transfer by conduction

(diffusion of energy).
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The proportionality constant K is
a transport property known as
the thermal conductivity
(W/mK) and is a characteristic
of the wall material.
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ExampPLE 1.1

The wall of an industrial furnace is constructed from 0.15-m-thick fireclay brick
having a thermal conductivity of 1.7 W/m - K. Measurements made during
steady-state operation reveal temperatures of 1400 and 1150 K at the inner and
outer surfaces, respectively. What is the rate of heat loss through a wall that is
0.5 m by 1.2 m on a side?

SOLUTION
[rer = _s—e— 1 a]

Known: Steady-state conditions with prescribed wall thickness, area, thermal
conductivity, and surface temperatures.

Find: Wall heat loss.

Schematic:
H=05m
k=1.7 Wim-K -
T, = 1400 K T,=1150K |

a0

Wall area, A

Assumptions:
1. Steady-state conditions.
2. One-dimensional conduction through the wall.
3. Constant thermal conductivity.

Analysis:  Since heat transfer through the wall is by conduction, the heat flux
may be determined from Fourier’s law. Using Equation 1.2, we have

250K _ 5833 Wim?

0.15m

¢ = k55 = 1.7Wim K




The heat flux represents the rate of heat transfer through a section of unit area,
and it is uniform (invariant) across the surface of the wall. The heat loss through
the wall of area A = H X W is then

g.= (HW) ¢, = (0.5m X 1.2 m) 2833 W/m? = 1700 W 4

Comments: Note the direction of heat Aow and the distinction between heat
flux and heat rate.

o=




A steel pipe having an inside diameter of 1.88 cm and a wall thickness of 0.391 cm 1§ sub-
jected to inside and outside surface temperature of 367K and 344 K, respectively (sze Fig-
ure 15.3). Find the heat flow rate per foot of pipe length, and also the heat flux based on
both the inside and outside surface areas.

Figure 15.3 Hzat conduction in a radial direction with uniform
surface temperatures.

The first law of thermodynamics applied to this problem will reduce to the form
80Q/dt = 0, indicating that the rate of heat transfer into the control volume is equal to the
rate leaving 1.e., Q = ¢ = conslant.

Since the heat flow will be in the radial direction, the independent variable is r, and
the proper form for the Fourier rate equation is

= padl
9 mdr

Writing A = ZﬂLr we see that the equation becomes

- dr
q, = —k(2mrlL) 5



where g,, is constant, which may be separated and solved as follows:

r{" ?lff TI
N “-ZWIcLJ‘ dT = z-mrch a7
r, T, To

g, In % = 27kL(T,— T,)

o 2atkL
In r/r;

(T — T,)

qr

Substituting the given numerical values, we obtain
S 27(42.90 W/m - K)(367 — 344)K
A In (2.66/1.88)
= 17 860 W/m (18 600 Btuw/hr - ft)

The inside and outside surface areas per unit Jength of pipe are
A, = m(1.88)(10 %)(1) = 0.059 m*/m (0.194 ft'/ft)
A, = m(2.662)(10 *)(1) = 0.084 m*/m (0.275 ft'/ft)

Finally for the same amount of heat flow the fluxes based on
The inner and out surface areas differ by approximately 42%.

q, 17860 _ 2.q 17860 5
Ai ~ 0.059 =302.7kW I'm ’Ao ='0.084 =212.6kW Im




Consider a hollow cylindrical heat-transfer mediurm having inside and outside radii of r,
and r, with the corresponding surface temperatures T, and T,. If the thermal-conductivity
variation may be described as a linear function of temperature according to

k = ko1 + BT)

calculate the steady-state heat-transfer rate in the radial direction, using the above relation
for the thermal conductivity, and compare the result with that using a & value calculated at
the arithmetic mean temperature.

Figure 15.3 applies. The equation to be solved is now

q, = —k,(1 + BT)](2mrL) %—E

which, upon separation and integration, becomes

g | 9= 2kl (1 + BT)dT
1,
=2mk,L | (1+BT)dT
Tﬂ
_ 2mk,L gre|"
g In r:u"ri ~T+ o :IT-J
2wk L[, B
v 1:,}] (= L) (15-10)




Noting that the arithmetic average value of k would be

B
kovg = kﬂ[l +5(h+ 3:,)]

we see that equation (15-10) could also be written as
54 277k o L
ol In l':,.l"r',-

q, (T| =2 r'.r}

Thus the two methods give identical results.




Convection:

Heat transfer due to convection involves the
energy exchange between a surface and an adjacent fluid

Forced Convection: When a fluid is made to flow past a
solid surface by an external agent such as a fan or pump

Free/Natural Convection: Warmer (or cooler) fluid next to the
Solid boundary cause circulation because of the density variation
Resulting from the temperature variation throughout a region of
the fluid.

Newton’s Law of Cooling: g/A = hAT

q: rate of convective heat transfer (W); A: area normal to direction of

heat transfer; h: convective heat transfer coefficient, AT: temperature
Difference between the surface and the fluid.



Convective Heat Transfer Processes: Ref: ID (Figure 1.5; p7)
(a) Forced Convection, (b) Free/Natural Convection,
(c) Boiling, and (d) Condensation.

Buoyancy-driven
flow

Forced .« : q"

flow Air —— Hot components
— / on printed
Lt lsoy circuit boards q"
—_— /
- — _HAHREEE
E—

(a) (b)

Vapor g
bubbles G

Hot plate

(c) (d)

FIGURE 1.5 Convection heat transfer processes. (a) Forced convection. (b) Natural
convection. (¢) Boiling. (d) Condensation.



Boundary layer development in convection heat transfer
Ref. ID (P. 6; Fig. 1.4)
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Radiant Heat Transfer

(1) No medium is required for its propagation.

(2) Energy transfer by radiation is maximum when the two
Surfaces are separated by vacuum.

(3) Radiation heat transfer rate equation is given by the
Stefan-Boltzmann law of thermal radiation:

Z=0T4

g: rate of radiant energy emission (W); A: area of emitting
surface (m?); T: absolute temperature; o: Stefan-

Boltzmann Constant = 5.676 x 108 W/m2-K4



Radiation Exchange. Ref: ID (Figure 1.6; P. 9)
(a) At surface and (b) between a surface and large surroundings.

Gas
T. h

Gas
i

\

Surroundings . )
%.& /fconv at Tsur qrad\ /qconv
Surface of emlsswlty Surface of emissivity
€, absorptivity o, and €=aq,area A, and
temperature 7, temperature T
(a) (b)

Ficure 1.6 Radiation exchange: (a) at a surface and (b) between a surface and large
surroundings.



Table 15.1 Approximate Values of the Convective
Heat-Transfer Coefficient

Mechanism h, Bwwhr ft? °F h, Wi(m?+ K)
Free convection, air 1-10 5-50
Forced convection, air 5-50 25-250
Forced convection, waler 50-3000 250-15 000
Boiling water 500-5000 2500-25 000

Condensing water vapor 1000-20 000 5000-100 000




The three modes of heat transfer have been considered
separated.

In real world, different modes of heat transfer are
coupled.

Consider the case below for steady state conduction through
a plane wall with its surfaces held at constant temperature
T,and T,.




Writing the Fourier rate equation for the x direction, we have

the _ _;,:‘jI

Al dx (15-1)

Solving this equation for ¢, subject to the boundary conditions 7= T, atx = 0and T = T,

at x = L we obtain
L 7,
5f¢ﬁ=—kf¢ﬁ=kfﬂﬂ'
A Jy 7 h

or

.= % (1), — T (15-14)

Equation {15-14) bears an obvious resemblance to the Newton rate equation
q. = hA AT (15-11)

We may utilize this similarity in form in a problem in which both tvpes of energy transfer
are involved.

Consider the composite plane wall constructed of three materials in layers with di-
mensions as shown in Figure 15.5. We wish to express the steady-state heat-transfer rate
per unit area between a hot gas at temperature 7}, on one side of this wall and a cool gas at
T, on the other side. Temperature designations and dimensions are as shown in the figure.
The following relations for g, arise from the application of equations (15-11) and (15-14):



kA k-A
e hirA[Th = T]) = L;! '[T'[ = T]) o 1-#2 (T'.‘. » Tt}
kA
= 4 (I, — T) = hA(T, ~ T)

¢ Figure 15,5 Steady-state heat transfer
through a composite wall.

Each temperature difference is expressed in terms of g, as follows:

T,— T, =q/(1/h,A)
T,—T,=q(L,/k,A)
T, — T = q(Ly/ksA)
Ty = T, = q(L/k;A)
Ty=T,.=q(l/hA)



Adding these equations, we obtain

L 1+L1+L:_|__L3_E
h=2e =B\ A" A kA kA hA

and finally, solving for g,, we have

Th i TL ) x
C \/h,A + L/kA+ Llk-A + Li/k:A + 1/h.A (15-15)

Note that the heat-transfer rate is expressed in terms of the overall temperature difference.
If a series electrical circuit

H R1 RE 'Hﬂ R4 HE I-
V‘I 1;2

is considered, we may write

ki AV _
Ry +R;,+Ry+R,+Rs >R

!

The analogous quantities in the expressions for heat flow and electrical current are apparent
AV — AT
I—gq,
R, — 1/hA, L'kA



and each term in the denominator of equation (15-15) may be thought of as a thermal re-
sistance due to convection or conduction. Equation (15-15) thus becomes a heat-transfer
analog to Ohm’s law, relating heat flow to the overall temperature difference divided by
the total thermal resistance between the points of known temperature. Equation (15-15)
may now be written simply as

AT
e
E Rthermul

This relation applies to steady-state heat transfer in systems of other geometries as well.
The thermal-resistance terms will change in form for cylindrical or spherical systems, but
once evaluated, they can be utilized in the form indicated by equation (15-16). With spe-
cific reference to equation (15-9), it may be noted that the thermal resistance of a cylindri-
cal conductor is

(15-16)

In(r,/r,)
2mkL

Another common way of expressing the heat-transfer rate for a situation involving a
composite material or combination of mechanisms is with the overall heat-transfer coeffi-
cient defined as

_—
U_AﬁT

(15-17)

where U is the overall heat-transfer coefficient having the same units as 4, in W/m* * K or
Btu/hr ft* °F.



Saturated steam at 0.276 MPa flows inside a steel pipe having an inside diameter
of 2.09 cm and an outside diameter of 2.67 cm. The convective coefficients on the
inner and outer pipe surfaces may be taken as 5680 W/m*+K and 22.7 W/m?: K,
respectively. The surrounding air is at 294 K. Find the heat loss per meter of bare pipe
and for a pipe having a 3.8 cm thickness of 85% magnesia insulation on its outer

surface.
In the case of the bare pipe there are three thermal resistances to evaluate

R! — Rcum'cﬂinn inside IHIFA:
RJ = chmemiun outside — ”hOAﬂ
R; = R nduction = In(ro/r)/2mkL

For conditions of this problem these resistances have the values
R, = 1/[(5680 W/m" - K)(7)(0.0209 m)(1 m)]
= 0.00268 K/W
R, = 1/[(22.7 W/m® » K)(7)(0.0267 m)(1 m)]
= 0,525 K/'W

and

e In(2.67/2.09)
7 2m(42.9 W/m - K)(1 m)

= (.00091 K/W



The inside temperature is that of 0.276 MPa saturated steam, 267°F or 404 K. The heat
transfer rate per meter of pipe may now be calculated as

_ AT _ 404 — 294K
1"k~ 058KW

=208 W

In the case of an insulated pipe, the total thermal resistance would include R, and j
R, evaluated above, plus additional resistances to account for the insulation. For the

insulation
10.27 =2.67+3.8*2

" In(10.27/2.67)
T 27(0.0675 W/m - K)(1 m)

= 3.176 KW

R,

and for the outside surface of the insulation

Re = 1/[(22.7 W/m® - K)()(0.1027 m)(1 m)] k value for 85%
= 0.1365 K/W (0.0720 e R

Biu | Magnesia

thus the heat loss for the insulated pipe becomes WWWR Page 676

_ AT _ 404 — 294K With interpolation

1= R™ 3316K/W
Btu
=332 W (113 hr)

a reduction of approximately 85%!




Example 3 could also have been worked by using an overall heat-transfer coefficient,
which would be, in general

o e ATBR_ 1
AAT  AAT ASR

or, for the specific case considered

1

U=
All/AR, + [In(r,/r))2mkL + 1/A,h,]

(15-18)

Equation (15-18) indicates that the overall heat-transfer coefficient, U, may have a differ-
ent numerical value, depending on which area it is based upon. If, for instance, U is based
upon the outside surface area of the pipe, A,, we have

l

Us = A TAh + (A, n(r,Ir)V2miL + Uk,

thus it is necessary, when specifying an overall coefficient, to relate it to a specific area.

One other means of evaluating heat-transfer rates is by means of the shape factor,
symbolized S. Considering the steady-state relations developed for plane and cylindrical
shapes

q = T” (15-14)



and

_ 2mkL g
=i AT (15-9)

if that part of each expression having to do with the geometry is separated from the re-
maining terms, we have, for a plane wall,

qzk(%)ﬂT

S i
e (]n(rt,fr:-}) g

and for a cylinder

E:aln:h cf the bracketed terms is the shape factor for the applicable geometry. A general |
lation utilizing this form is e

= kS AT (]5_19)

Equation (15-19) offers some advantages when a given zeometry is required be
cause of space and configuration limitations. If this is the case, then the shape factor

may be calculated and ¢ determined for various materials displaying a range of values
of k. i



The rate equations for heat transfer are as follows:

Cenduction: the Fourier rate equation

q

—=—k VT

A
Convection: the Newton rate equation

&{ = h AT

A

Radiation: the Stefan-Boltzmann Law for energy emitted from a black surface

q 4
—=oT
A
Combined modes of heat transfer were considered, specifically with respect to the
means of calculating heat-transfer rates when several transfer modes were involved.
The three ways of calculating steady-state heat-transfer rates are represented by the

equations

AT
g, = (15-16)
2Ry
where 3, R; is the total thermal resistance along the transfer path
q, = UA AT (15-17)

where U is the overall heat transfer coefficient; and

g, = kS AT (15-19)

where S is the shape factor.



The heat diffusion equation
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FIGURE 2.8 Differential control volume, dx dy dz, for conduction analysis in Carte-
sian coordinates.

Ref. ID (P. 61; Fig. 2.8)



Ref. ID (P. 62)

q X + dx = q X
q y + dy = q v
q z + dz — q z

Thermal energy

generation

®
Energy E
storage st

Conservation
of energy

0 ¢

. xx dx (2 .7 a)
09 g, (2 .7 D)
0y
8@(122 dz (2.7 ¢)
E, = qdxdydz (2.8)
= pC dxdydz (2.9)
Y

E,+E,~E,, =E,(1.11a)



. or
q.+4q,+q. tqdxdydzq, ., —q, .4 9. =PC, —~ dxdydz (2.10)

oq oq oq . oT
*dy ——2L dy— 2= dz v gdxdvdz= pC “—dxdvdz (2.11
™ 8yyazzq ydz=pC, — ydz  (2.11)

qg. = —kdydz or (2.12 a)
0x

q, = — kdxdz or. (2.12 b)
0y

g . = — kdxdy or (2.12 ¢)

0z



Heat (Diffusion) Equation: at any point in the medium the rate of
energy transfer by conduction in a unit volume plus the
volumetric rate of thermal energy must equal to the rate of
change of thermal energy stored within the volume.

g (ka—Tj+££ka—Tj+§(ka—Tj+é:pCPa—T (2.13)
Z

Ox ol oy oz ot

Net conduction heat flux into the controlled volume

o(,o0T .
TNk ax =g - 2.14
ax( axj x qx qx+dx ( )

If the thermal conductivity is constant.
o°T 0°T o0°T q 1loT
+ + + ==

2.15
ox° oy’ 0z° k o o (215




Where o = k/(p C,) Is the thermal diffusivity

Under steady-state condition, there can be no change in
the amount of energy storage.

a(kﬂj+a(kﬂj+8(k(yj+é=0 (2.16)
ox\ ox) oyl oy) oz\ oz

If the heat transfer i1s one-dimensional and there IS no
energy generation, the above equation reduces to

d , dT
—(k—) =0 2.17
k=) (2.17)

Under steady-state, one-dimensional conditions with no
energy generation, the heat flux is a constant in the
direction of transfer.



Cylindrical coordinates (1)

When the del operator V/ is expressed in cylindrical coordinates,
the general form of the heat flux vector , and hence the Fourier’s
Law, IS

q"'=—kVT = —k(fa—T + ]Ea—T + /?a—T)
or r og o/



Cylindrical coordinates (2)
o (k £)+tf(,;(kfj—i)

e (L rfT) +4=pc, L (2.20)

0z

q:+d
L~
. <= rdo P T
' q, i r{a- | '--_;,‘
\ I \\ I - 1 q
! d— I 0+ do
| AT -
- | 1 1 2 1

| dz bt |
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Ficure 2.9 Differential control volume. dr - r dd “dz. for conduetion

analysis in eylindrical coordinates (r. &, z).



Spherical coordinates (1)

When the del operator \/ is expressed in spherical coordinates,
the general form of the heat flux vector , and hence the Fourier’s
Law, IS

q":—kVT:—k(fa—T+]18T+l_€ 1 o
or r 06 rsiné o¢

or . k or . koT

":—k—’ = — - ; = -
T e e T T isine o’ 10 T r o6




Spherical coordinates (2)

Lol g
rzﬁr(krzar)+rzsin295¢(kﬁ¢)

1 d oA g s aT
+’lsin9%(k51n6&9)+q-pcp 5 (2.23)
de + do
rsinf@do
!-. - qy £ i e T

o + do

FiGure 2.10 Differential control volume, dr * rsin 0 d¢ * r df, for
conduction analysis in spherical coordinates (r, ¢, 0).



Differential Equations of Heat
Transfer

Consider the control volume having dimensions Ay, Ay, and Az as depicted in Figure
16.1, Refer to the control-volume expression for the first law of thermodynamics

50 oW W, f J P : J j J
s = lplyom)dA + epdV 6-10
a -l ik g p Pl U L d oy

The individual terms are evaluated and their meanings are discussed below.

The net rate of heat added to the control volume will include all conduction effects,
the net release of thermal energy within the control volume due Lo volumetric effects such
as a chemical reaction or induction heating, and the dissipation of electrical or nuclear en-
ergv, The generation effects will be included in the single term, ¢, which is the volumetric
rate of thermal enerey generation having units W/m' or Buwhr ft', Thus the first rerm may
be expressed as




o k‘ﬁ —kﬂ Avdz + p2 "i'ﬂ_' r Az
di O hipy 0%y oy Yty 0
AT aT -
+ 1% = k28 L Ar Ay + 4 Ax Ay Az (15-1)
|: i AL ';ziy] e -

N

=Y

Figure 16,1 A differential control volume.



The shaft work-rate or power term will ke taken as zero for our present purpeses, -
This term is specifically related 1o work done by some effect within the control volume |
which. for the differential case, is not present. The power term is thus evaluated as !

W _ -
di = “'5'2} i

The viscous wark rate, occurring at the control surface, is formally evaluated by in.
tegrating the dot product of the viscous stress and the velocity over the control surface,
As this operation is tedious, we shall cxpress the viscous work rate as A Ax Ay Ag
where A is the viscous wark rate per unit volume. The third term in equation (6-10) is
thus writien as

oW,
T A Ax Ay Az (16-3)

The surface integral includes all energy transfer across the control surface due to fluid
flow. All terms associated with the surface integral have been defined previously. The sur-

[ace integral i§
fl
J-J. e + E) p(v *n)dA

2 ' 2
= i v - E — E 2y = E ARG
- \‘PLI(E +gyTu+ p) Eop PU#(E + gyt p)‘;l Ay Az

3 . \
+ {P’-f’y(% T EVTHT J—:}) ik i PU,(% + gy + e+ ’E) H;I Ax Az

U_: i E —_— u—l Ty E A% L i
+|:pu:(2 +g}+u+p) ik pux(z +‘;L-,,+u+p)[|.i’uﬁy (16-4)




The energy accumulation term, relating the variation in total energy within the con-
trol volume as a function of time, 1s

: B 10 o Ay Az y
ai”J:_v.“’“’”‘a;[z*&‘+"]PMJF1¢ (16-5)

Equations (16-1) through (16-5) may now be combined as indicated by the general
first-law expression, cquation (6-10). Performing this combination and dividing through
by the volume of the element, we have

K(ATI0X)) yh s — K(@TOx) ), 5 k(OTIGY)| yuny — KGTIAY) |,

Ax Av
2 KoT162)| 14 42 — K(8TII2) |, e T
Az
_ {pud@'2) + gy + u + (Plp)lxsar — puA(v2) + gy + u + (Plp)Ld
Ax
3 [pvy(v°12) + gy ~ u + (Plp)]ysy = pUQY/2) + gy + u + (Plp)]})
Ay
i [poJ(U12) + gy + u =~ (PIp)]| g4 az — pud(V2) + gy + u + (Plp)lly)
Az

L‘:
% *‘“%P(? +.e.:-‘+u)



General Form of The Differential
Energy Equation

DT

VkVTq¢ pC ——

/

conduction

/

dissipation

Dt
\

substantial
derivative

transient +
convective



Special Forms of The Differential
Energy Equation

T'he applicable forms of the energy equation for some commonly encountered situations
follow. In every case the dissipation term 1s considered ncghigibly small.
I. For an incompressible fluid without energy sources and with constant &

pe, 2L =k VT (16-14)

I1. For isobaric flow without energy sources and with constant k, the energy equation is

pfu% = kV°T (16-15)

Note that equations (16-14) and (16-15) are identical yet apply to completely different

physical situations. The student may wish to satisfy himself at this point as to the reasons
behind the unexpected result.



I1I. In a situation where there is no fluid motion all heat transfer is by conduction. If
this situation exists, as it most certainly does in solids where ¢, = ¢, the energy equation

becomes

pc,,%=?-k?T+é; (16-10)

Equation (16-16) applies in general to heat conduction. No assumption has been made
concerning constant k. If the thermal conductivity is constant, the energy equation 1s

3 ﬂ :
o _ wiry 9 17
5 @ g pC; (16-17)

where the ratio &/pc, has been symbolized by « and is designated the thermal diffusivity. It
is casily seen that @ has the units, L/1; in the SI system a is expressed in m-/s, and as
ft*/hr in the English system.

If the conducting medium contains no heat sources. equation (16-17) reduces to the
Fourier field equarion

ﬂ: a VT (16-18]

which is occasionally referred to as Fourier’s second law of heat conduction.



For a system in which heat sources are present but there is no time vanaton, equation
(16-17) reduces to the Poisson equaiion

=3

Y7+ ==0 (16-19)

e

The final form of the heat-conduction equation to be presented applics to a steady-
state sitwation without heat sources. For this case the temperature distribution must satisty
the Laplace equation

Vi = () (16-20)

Each of equations (16-17) through (16-20) has been wntten in gencral form, thus
each applies to any orthogonal coordinate system. Writing the Laplacian operator, V-, in
the appropriate form will accomplish the transformation to the desired coordinate system.
The Fourier field equation written in rectangular coordinates 1s
A Flr G2 aﬂ

. + L2+
o ax* dy* e’

(16-21)

in cylindrical coordinates
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and in spherical coordinates

ar 1 8 »aT ST 1. &7
ke 8 o | e [P Se— | = =1 BB —r | A m———— (16-23)
f [r' 3"( f"") r=sin @ 00 ( '15'5) r-sin” 6 d‘qf:"]

The reader is referred to Appendix B for an illustration of the variables in cylindrical and
spherical coordinate systems.




Initial Conditions
Values of T and v at the start of time interval of interest.

Boundary Conditions
Values of T and v existing at specific positions of the
boundaries of a system
I.e. for given values of the significant space variables

Isothermal Boundaries
Insulated Boundaries



gx= 1

Figure 16.2 Conducticn and
convection at a system boundary.

This condition is illustrated in Figure 16.2. At the left-hand surface the boundary
condition 1s

P e OL :
Ty — Tlxet) = —k 5 i (16-24)
and at the right-hand surface
BTl —T) = k2 (16-25)
<




TaBLE 2.1 Boundary conditions for the heat
diffusion equation at the surface (x = 0)

1. Constant surface temperature
10,1 =1, (2.24)

2. Constant surface heat flux
(a) Finite heat flux

Ref: ID (P. 69,
Table 2.1)

LN 09
Koo =d, 225)
(b) Adiabatic or insulated surface
dT
5; =0 =0 (226)

3. Convection surface condition

—kg = hT, = (0, 1]




